Python Functions and Data Types

Functions:

  • Function: A block of organized, reusable code that performs a specific task.
    • def greet(name): return "Hello, " + name
  • Function Call: Executing a function to perform its defined task
    • message = greet("Alice")
  • Arguments: Values passed to a function when it’s called.
    • def add(x, y): return x + y result = add(5, 3) # Result is 8
  • Parameters: Variables in a function definition that receive arguments.
    • def multiply(a, b): return a * b
  • Return Statement: Defines what a function should return.
    • def square(x): return x * x
  • Default Arguments: Arguments with predefined values.
    • def power(base, exponent=2): return base ** exponent
  • Variable Scope: The part of the code where a variable can be accessed.
    • def my_func(): x = 10 # Local variable
  • Global Variable: A variable defined outside any function and accessible everywhere.
    • global_var = 100 def access_global(): print(global_var)
  • Lambda Function: An anonymous function defined using the lambda keyword.
    • double = lambda x: x * 2

Data Types:

  • Integer: Whole numbers without decimal points.
    • age = 25
  • Float: Numbers with decimal points.
    • pi = 3.14
  • String: A sequence of characters.
    • message = "Hello, Python"
  • Boolean: Represents truth values True or False.
    • is_valid = True
  • List: An ordered collection of elements.
    • numbers = [1, 2, 3, 4, 5]
  • Tuple: Similar to a list but immutable.
    • coordinates = (3, 5)
  • Dictionary: A collection of key-value pairs.
    • student = {"name": "Alice", "age": 20, "grade": "A"}
  • Set: An unordered collection of unique elements.
    • unique_numbers = {1, 2, 3, 4, 5}
  • DataFrame: A 2-dimensional labeled data structure in pandas.
    • import pandas as pd data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]} df = pd.DataFrame(data)
  • Indexing: Accessing elements in a data structure using indices.
    • first_name = student["name"]
  • Slicing: Extracting a subset of elements from a sequence.
    • sublist = numbers[1:4]
  • Appending: Adding an element to the end of a list.
    • numbers.append(6)
  • Updating: Modifying elements in a list.
    • numbers[0] = 0
  • Keys: The unique identifiers in a dictionary.
    • keys = student.keys()
  • Values: The data associated with the keys in a dictionary.
    • values = student.values()
  • DataFrame Columns: Named series within a DataFrame.
    • ages = df['Age']
  • DataFrame Rows: Individual records in a DataFrame.
    • row = df.iloc[0] # First row
  • Concatenation: Joining two or more sequences together.
    • combined_list = numbers + unique_numbers
  • Sorting: Arranging elements in a specific order.
    • sorted_list = sorted(numbers)
  • List Comprehension: Creating a new list using concise syntax.
    • squares = [x ** 2 for x in numbers]
  • Tuple Packing and Unpacking: Assigning multiple values in a single operation.
    • x, y = coordinates
  • Key-Value Pair Manipulation: Adding, updating, or deleting entries in a dictionary.
    • student["grade"] = "A+"
  • Set Operations: Union, intersection, and difference between sets.
    • common_numbers = numbers & unique_numbers
  • DataFrame Operations: Filtering, grouping, and aggregating data in a DataFrame.
    • filtered_df = df[df['Age'] > 25]
  • Data Type Conversion: Changing one data type to another.
    • num_str = str(42) # Convert to string
  • Membership Testing: Checking if an element is present in a sequence.
    • is_present = 3 in numbers
  • Dictionary Iteration: Looping through keys, values, or items in a dictionary.
    • for key, value in student.items(): print(key, value)
  • List Length: Counting the number of elements in a list.
    • num_elements = len(numbers)
  • Tuple Immutability: Preventing modification of tuple elements.
    • coordinates[0] = 4 # Error
  • Dictionary Keys Immutability: Using immutable objects as dictionary keys.
    • immutable_dict = {(1, 2): 'value'}
  • Index Out of Range Handling: Avoiding accessing elements beyond the list’s length.
    • if index < len(numbers): element = numbers[index]
  • List Appending and Extending: Adding elements from another sequence to a list.
    • new_numbers = [6, 7, 8] numbers.extend(new_numbers)
  • List Deletion: Removing elements by index or value.
    • del numbers[0] # Delete by index numbers.remove(5) # Delete by value
  • DataFrame Filtering: Selecting rows based on certain conditions.
    • adults_df = df[df['Age'] >= 18]
  • DataFrame Grouping: Grouping data by a certain column.
    • grouped = df.groupby('Age') ``
What are your feelings